Preview the raw CSV for an API data set
preview_dataset.Rd
This function is mostly designed for exploring the API, and is unlikely to be suitable for long term production use.
You can set the number of rows to preview using the n_max parameter. This
uses the n_max from readr::read_csv()
under the hood.
As there are no IDs involved, this is brittle and code relying on this function will likely break whenever there is renaming of variables or items in the data.
It is recommended to take the time to set up custom queries using the
query_dataset()
function instead.
If you are using this function for more than exploratory purposes, make sure you subscribe to the data set you're downloading and then keep track of any updates to the data.
Usage
preview_dataset(
dataset_id,
dataset_version = NULL,
api_version = NULL,
n_max = 10,
verbose = FALSE
)
Examples
# Preview first 10 rows
preview_dataset(example_id("dataset"))
#> time_period time_identifier geographic_level country_code country_name
#> 1 202324 Academic year National E92000001 England
#> 2 202324 Academic year National E92000001 England
#> 3 202324 Academic year National E92000001 England
#> 4 202324 Academic year National E92000001 England
#> 5 202223 Academic year National E92000001 England
#> 6 202223 Academic year National E92000001 England
#> 7 202223 Academic year National E92000001 England
#> 8 202223 Academic year National E92000001 England
#> 9 202122 Academic year National E92000001 England
#> 10 202122 Academic year National E92000001 England
#> establishment_type count_enrolments count_possible_sessions
#> 1 Total 7243517 992097450
#> 2 Secondary schools 3279477 443688893
#> 3 Primary schools 3828263 529786753
#> 4 Special schools 135777 18621804
#> 5 Total 7205803 953596210
#> 6 Secondary schools 3231224 422658822
#> 7 Primary schools 3846307 513933802
#> 8 Special schools 128272 17003586
#> 9 Total 7124944 961010417
#> 10 Secondary schools 3155929 419078718
#> count_absent_sessions
#> 1 66345877
#> 2 36159390
#> 3 27819920
#> 4 2366567
#> 5 71792641
#> 6 37165959
#> 7 32350550
#> 8 2276132
#> 9 66300402
#> 10 34188065
# Get 2 rows
preview_dataset(example_id("dataset"), n_max = 2)
#> time_period time_identifier geographic_level country_code country_name
#> 1 202324 Academic year National E92000001 England
#> 2 202324 Academic year National E92000001 England
#> establishment_type count_enrolments count_possible_sessions
#> 1 Total 7243517 992097450
#> 2 Secondary schools 3279477 443688893
#> count_absent_sessions
#> 1 66345877
#> 2 36159390
# Get all rows
preview_dataset(example_id("dataset"), n_max = Inf)
#> time_period time_identifier geographic_level country_code country_name
#> 1 202324 Academic year National E92000001 England
#> 2 202324 Academic year National E92000001 England
#> 3 202324 Academic year National E92000001 England
#> 4 202324 Academic year National E92000001 England
#> 5 202223 Academic year National E92000001 England
#> 6 202223 Academic year National E92000001 England
#> 7 202223 Academic year National E92000001 England
#> 8 202223 Academic year National E92000001 England
#> 9 202122 Academic year National E92000001 England
#> 10 202122 Academic year National E92000001 England
#> 11 202122 Academic year National E92000001 England
#> 12 202122 Academic year National E92000001 England
#> establishment_type count_enrolments count_possible_sessions
#> 1 Total 7243517 992097450
#> 2 Secondary schools 3279477 443688893
#> 3 Primary schools 3828263 529786753
#> 4 Special schools 135777 18621804
#> 5 Total 7205803 953596210
#> 6 Secondary schools 3231224 422658822
#> 7 Primary schools 3846307 513933802
#> 8 Special schools 128272 17003586
#> 9 Total 7124944 961010417
#> 10 Secondary schools 3155929 419078718
#> 11 Primary schools 3847780 525570085
#> 12 Special schools 121235 16361614
#> count_absent_sessions
#> 1 66345877
#> 2 36159390
#> 3 27819920
#> 4 2366567
#> 5 71792641
#> 6 37165959
#> 7 32350550
#> 8 2276132
#> 9 66300402
#> 10 34188065
#> 11 30023935
#> 12 2088402